

FEATURES

- Front panel of IP65 type is protected against water-splash and dust
- 100-240V AC free-voltage input
- Built-in Screw terminals
- Screw terminal type is used for easy wiring and reducing additional cost for accessories.
- 8 different operation modes: (PM4H-A)
- Tube base with pin style terminals
- Multiple time ranges - 1 s to 500 h (Max.)
- Short body - 62.5mm 2.46 inch (screw terminal type)

PRODUCT TYPE

If you use this timer under harsh environment, please order above sealed type (IP65 type). IP65 type — Protection dust and water jet splay on the front face.

TIME RANGE

Scale	Time unit	sec	min	hrs	10h
1	Control time range	0.1 s to 1 s	0.1 min to 1 min	0.1 h to 1 h	1.0h to 10h
5		0.5 s to 5 s	0.5 min to 5 min	0.5 h to 5h	5 h to 50h
10		1.0s to 10s	1.0 min to 10 min	1.0h to 10h	10h to 100h
50		5 s to 50s	5 min to 50 min	5h to 50h	50h to 500h

PM4H-A/PM4H-S/PM4H-M
All types of PM4H timer have multi-time range.
16 time ranges are selectable.
1 s to 500 h (Max. range) is controlled.

Note: 0 setting is for instantaneous output operation.

CHARACTERISTICS

Item		Type	PM4H-A	PM4H-S	PM4H-M
Rating	Rated operating voltage		100 to 240V AC, 12V DC, 24V AC/DC		
	Rated frequency		$50 / 60 \mathrm{~Hz}$ common (AC operating type)		
	Rated power consumption		$\begin{gathered} \text { Max. 10VA (100 to } 240 \mathrm{~V} \mathrm{AC}) \\ \text { Max. } 2.5 \mathrm{VA}(24 \mathrm{~V} \text { AC) } \\ \text { Max. } 2 \mathrm{~W}(12 \mathrm{~V} \text { DC, } 24 \mathrm{~V} \text { DC) } \\ \hline \end{gathered}$		
	Output rating		5A 250V AC (resistive load)		
	Operating mode		Pulse ON-delay Pulse Flicker Pulse ON-Flicker Differential ON/OFF-delay (1) (2) Signal OFF-delay Pulse One-shot Pulse One-cycle	Power ON-delay	Power ON-delay Power Flicker Power ON-flicker Power One-shot Power One-cycle (with instantaneous contact)
	Time range		1s to 500h (Max.) 16 time ranges switchable		
Time accuracy Note:)	Operating time fluctuation		$\pm 0.3 \%$ (power off time change at the range of 0.1 s to 1 h)		
	Setting error		$\pm 5 \%$		
	Voltage error		$\pm 0.5 \%$ (at the operating voltage changes between 85 to 110\%)		
	Temperature error		$\pm 2 \%$ (at $20^{\circ} \mathrm{C}$ ambient temp. at the range of -10 to $+50^{\circ} \mathrm{C}+14$ to $+122^{\circ} \mathrm{F}$)		
Contact	Contact arrangement		Timed-out 2 Form C		Timed-out 1 Form C Instantaneous 1 Form C
	Contact resistance (Initial value)		Max. $100 \mathrm{~m} \Omega$ (at 1A 6V DC)		
	Contact material		Silver alloy		Au flash on Silver alloy
Life	Mechanical (contact)		2×10^{7}		
	Electrical (contact)		10^{5} (at rated control capacity)		
Electrical function	Allowable operating voltage range		85 to 110% of rated operating voltage (at $20^{\circ} \mathrm{C}$ coil temp.)		
	Insulation resistance (Initial value)		Between live and dead metal parts Min. $100 \mathrm{M} \Omega$ Been input and output Between contacts of different poles Between contacts of same pole		
	Breakdown voltage (Initial value)		2,000Vrms for 1 min Between live and dead metal parts $2,000 \mathrm{Vrms}$ for 1 min Between input and output $2,000 \mathrm{Vrms}$ for 1 min Between contacts of different poles $1,000 \mathrm{Vrms}$ for 1 min Between contacts of same pole		
	Min. power off time		100 ms		
	Max. temperature rise		$55^{\circ} \mathrm{C} 131^{\circ} \mathrm{F}$		
Mechanical function	Shock resistance	Functional	Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ (4 times on 3 axes)		
		Destructive		$0 \mathrm{~m} / \mathrm{s}^{2}$ (5 times on	
	Vibration resistance	Functional	10 to 55 Hz : 1 cycle/min double amplitude of 0.5 mm (10 min on 3 axes)		
		Destructive	10 to 55 Hz : 1 cycle/min double amplitude of 0.75 mm (1 h on 3 axes)		
Operating condition	Ambient temperature		-10 to $+50^{\circ} \mathrm{C}+14$ to $+122^{\circ} \mathrm{F}$		
	Ambient humidity		Max. 85\%RH		
	Atmospheric pressure		860 to $1,060 \mathrm{hPa}$		
	Ripple factor (DC type)		20\%		
Others	Protective construction		IP65 on front panel (using rubber gasket ATC18002) <only for IP65 type>		
	Weight		100 g 3.527 oz (Pin type)		
			110 g 3.880 oz (Screw terminal type)		

Note: 1) Unless otherwise specified, the measurement conditions at the maximum scale time standard are specified to be the rated operating voltage (within 5% ripple factor for DC), $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ambient temperature, and 1 s power off time.
2) For the 1 s range, the tolerance for each specification becomes $\pm 10 \mathrm{~ms}$.

WIRING DIAGRAMS

PM4H-A

Pin type

- Timed-out 2 Form C

Screw terminal type

- Timed-out contact 2 Form C

Screw terminal type

- Timed-out 1 Form C
- Instantaneous 1 Form C

PM4H-S

Pin type

- Timed-out 2 Form C

Screw terminal type

- Timed-out 2 Form C

1) DC Type

Type	Pin	Screw terminal
PM4H-A	Connect the terminal (2) to negative $(-)$, and the terminal (10) to positive (+).	Connect the terminal 2 to negative (-), and the terminal 1 to positive (+).
PM4H-S PM4H-M	Connect the terminal (2) to negative $(-)$, and the terminal (7) to positive (+).	

2) Contact

Timed-out contact
 negative (-), and the terminal 1 to positive (+).

Instantaneous contact

DIMENSIONS

- PM4H- \square

Screw terminal type
(Flush mount)

Pin type
(Flush mount/Surface mount)

- Panel mount dimensions (with mounting frame)

Screw terminal type

Pin type

- Surface mount dimensions

Socket mount (Pin type)

- Panel cut out dimensions

Standard cut out dimensions are shown below.
Use mounting frame and rubber gasket (ATC18002).

- Adjacent mounting

Note) 1. The proper thickness of mounting panel is between 1 to 5 mm .
2. Adjacent mount is less water-resistant.

Operation mode	Operation	Time chart
Pulse ON-delay (ON)	Turn the operation selector to (01). Power is applied continuously. When a start signal is applied, the time cycle begins. The output contacts change state after the time delay is completed. The contacts will return to their normal state when a reset signal is applied or power is removed. (Note: When a stop signal is applied during timing operation, the time cycle stops. When a stop signal is removed, the time cycle resumes where it left off.)	
Pulse OFF-Flicker (FL)	Turn the operation selector to (FL). Power is applied continuously. When a start signal is applied, the time cycle begins but the output contacts remain in their normal state. When the time delay is completed, the output contacts change state and next time cycle begins. When this time delay is completed, the output contacts return to their normal state. This cycle will repeat until a reset signal is applied or power is removed. (Note: When a stop signal is applied during timing operation, the time cycle stops. When a stop signal is removed, the time cycle resumes where it left off.)	
Pulse ON-flicker FO	Turn the operation selector to ©0). Power is applied continuously. When a start signal is applied, the output contacts change state immediately and time cycle begins. When the time delay is completed, the output contacts change state and next time cycle begins. When the time delay is completed, the output contacts return to the normal state. This cycle will repeat until a reset signal is applied or power is removed. (Note: When a stop signal is applied during timing operation, the time cycle stops. When a stop signal is removed, the time cycle resumes where it left off.)	
Differential ON/OFF-delay (1) (0F1)	Turn the operation selector to (0f1). Power is applied continuously. When a start signal is applied, the output contacts change state immediately and time cycle begins. The output contacts change state after the timing cycle is completed. When the start signal is removed, the output contacts change state and time cycle starts again. If operation signal is turned ON or OFF during timing operation, the time cycle will restart. The output contacts will return to their normal state when a reset signal is applied or power is removed. (Note: When a stop signals is applied during timing operation, the time cycle stops. When a stop signal is removed, the time cycle resumes where it left off.)	
Signal OFF-delay (SF)	Turn the operation selector to (55). Power is applied continuously. When a start signal is applied, the output contacts change state immediately. When the start signal is removed the time cycle begins. The output contacts will return to their normal state when the time delay is completed. Reset will occur when a reset signal is applied or power is removed. (Note: When a stop signal is applied during timing operation, the time cycle stops. When a stop signal is removed, the time cycle resumes where it left off.)	

Note: Keep 0.1 s or more for power off time.
Keep 0.05 s or more for signal, stop, reset input time.

Operation mode	Operation	Time chart
Pulse One-shot (OS)	Turn the operation selector to (S) . Power is applied continuously. When a start signal is applied, the output contacts change state immediately and time cycle begins. When the time delay is completed, the output contacts return to their normal state. The contacts will return to normal state when a reset signal is applied or power is removed. (Note: When a stop signal is applied during timing operation, the time cycle stops. When a stop signal is removed, the time cycle resumes where it left off.)	
Differential ON/OFF-delay (2) (OF2)	Turn the operation selector to (©r). Power is applied continuously. When a start signal is applied, the ON-delay time cycle begins and the output contacts remain in their normal state. The output contacts change state after time delay is completed. When the start signal is removed the OFF-delay time cycle begins. The output contacts return to their normal state after the time delay is completed. If the start signal is applied or removed during the timing operation, the output contacts will change state and the time cycle starts over. The contacts will return to their normal state when a reset signal is applied or power is removed. (Note: When a stop signal is applied during timing operation, the time cycle stops. When a stop signal is removed, the time cycle resumes where it left off.)	
Pulse One-cycle (OC)	Turn the operation selector to ©c). Power is applied continuously. When a start signal is applied, the time cycle begins but the output contacts remain in their normal state. The output contacts change state for 0.8 s after time delay is completed. Reset will occur when a reset signal is applied or power is removed. (Note: When a stop signal is applied during timing operation, the time cycle stops. When a stop signal is removed, the time cycle resumes where it left off.)	

Note: Keep 0.1s or more for power off time.
Keep 0.05 s or more for signal, stop, reset input time.

PM4H-S

* LED lighting

Operation mode	Operation	Time chart	
Power ON-delay	When power is applied continuously, the time cycle begins. The output contacts change state after the time delay is completed.	Power supply Time out (N.O. contact) OP. LED POWER LED	

T: Setting time

PM4H-M

Operation mode	Operation	Time chart
	Power ON-delay When power is applied continuously, the instantaneous output contact changes state and the timing cycle begins. The timed contact changes state after the time delay is completed. Reset will occur when power is removed. PM4H-M timers do not have external signal, reset and stop inputs. (For other operation modes, refer to the operation mode of PM4H-A.)	Power ON-delay

Note: Keep 0.1 s or more for power off time. PM4H-M timers do not have each input which is signal, reset and stop.

Tradução dos Modos de Operações

Modelo: PM4HA
*LED aceso *LED piscando
T : Ajuste de tempo $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{\mathrm{a}}, \mathrm{t}_{\mathrm{b}}<\mathrm{T} \quad \mathrm{t}_{1}+\mathrm{t}_{2}=\mathrm{T}$

Modo	Funcionamento	Grafico
Pulse ON Delay	Começa a temporizar (tempo determinado pelo usuário) assim que houver uma entrada de sinal (2-6, não precisa ser constante, analisar gráfico ao lado) e após tempo pré-determinado os contatos NA passam para o estado NF e NF para o estado NA, até o Reset ou desligamento do aparelho.	
Pulse OFF-Flicker	Começa a temporizar (tempo determinado pelo usuário) assim que houver uma entrada de sinal (2-6, não precisa ser constante) e após o tempo pré-determinado contatos NA passam para o estado NF e NF para o estado NA, começando novamente a temporização e após o tempo pré determinado inverte o estado dos contatos e assim sucessivamente até o Reset ou desligamento do aparelho.	
Pulse ON-Flicker	Esse modo faz o inverso do modo anterior. Começa a temporizar (determinado pelo usuário) assim que houver uma entrada de sinal (2-6, não precisa ser constante), seus contatos NA passam para o estado NF e NF para o esta NA desde o momento que houver entrada de sinal, após o tempo prédeterminado começa a temporizar novamente (mesma escala de tempo) invertendo o estado dos contatos e assim sucessivamente até o Reset ou desligamento do aparelho.	

Modelo: PM4H-S

*LED aceso *LED piscando
T : Ajuste de tempo $t_{1}, t_{2}, t_{a}, t_{b}<T \quad t_{1}+t_{2}=T$

Modo	Funcionamento	
POWER ON Delay	Começa a temporizar (tempo determinado pelo usuário) assim que o aparelho é alimentado (não possui entrada de sinal), após o tempo pré-determinado os contatos NA passam para o estado NF e NF para o estado NA, até o Reset ou desligamento do aparelho.	Power supply

*LED aceso *LED piscando
T : Ajuste de tempo $t_{1}, t_{2}, t_{a}, t_{b}<T \quad t_{1}+t_{2}=T$

Modo	Funcionamento	Grafico		
Power ON-delay ON	Power ON-delay Neste modo quando o aparelho é alimento os contatos instantâneos mudam o estado para NF e permanece nesse estado até o desligamento, ja os contatos temporizados seguem a mesma lógico do modelo PM4HS e os outros modos seguem a mesma lógica que o modelo PM4H-A, porém este modelo não possui entra de sinal.	Power ON-delayPower supplyTime out (N.O. contact)		
Power Flicker FL				
Power ON-Flicker FO		Instantaneous contact (N.O. contact) OP. LED POWER LED	Ton	off
Power One-Shot (os)			$\underset{\substack{\text { che }}}{\text { it }}$	
Power On-cycle (OC)				

