

Manual of AMC Series intelligent power collection and monitoring device

Installation and Operation Instruction V3.1

DECLARATION

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any means, electronic, mechanical photocopying, recording, or otherwise without prior permission of Acrel. All rights reserved.

This company reserve power of revision of product specification described in this manual, without notice. Before ordering, please consult local agent for the latest specification of product.

CONTENTS

1. General	
2. Type and specification of products	1
3. Technical parameters	2
4 Installation wiring instructions	
4.1 Outline and mounting cutout size	3
4.2 Installation method.	4
4.3 Wiring method	5
5. Operating instructions	7
5.1 Explanation for keypad functionality	
5.2 Display Example	
5.3 Programming menu	
5.4 Programming example	
6 Communication	20
6.1 Register listing(MODBUS-RTU)	20
6.2 Communication application	
7 Common fault analysis	32

1.General

AMC series intelligent power collection and monitoring device is a smart meter designed for power moni toring needs of power systems, industrial and mining enterprises, utilities, and intelligent buildings. It integrates measurement of power parameters (such as single-phase or three-phase current, voltage, and active power). Power, reactive power, apparent power, frequency, power factor) and power monitoring and assessment management. At the same time, it has a variety of peripheral interface functions for users to choose: with RS485 communication interface, MODBUS-RTU protocol can meet the needs of communication network management; 4-20mA analog output can correspond to measured electrical parameters, meet DCS Such interface requirements; with switch input and relay output can realize the function of "remote signal" and "remote control" of circuit breaker switch. High-brightness LED/LCD display interface, parameter setting and control through buttons, ideal for real-time power monitoring systems. Can directly replace conventional power transmitters and measuring instruments. As an intelligent, digital front-end acquisition component, the instrument has been widely used in various control systems, SCADA systems and energy management systems.

2. Type and specification of products

Picture 1

Meter type	Basic function	Optional function	Co-selection function
AMC72-E4/KC AMC72L-E4/KC	Three phase voltage, Zero sequence voltage Three phase current, Zero sequence current Three phase active power, Total active power Three phase reactive power, Total reactive power Three phase apparent power, Total apparent power Three phase Power factor, Total power factor	①2DI+2DO+1Ep(K) ②4DI+2DO(K) ③Event record (SOE) ④T2-31 th and total harmonics measurement (H) ⑤2DI+2DO+1M(KM)	134 234 345
AMC96-E3/KC AMC96L-E3/KC AMC96-E4/KC AMC96L-E4/KC	Frequency, Voltage phase angle, Voltage and current imbalance, Forward and reverse power Four quadrant energy metering, System time display	①4DI+2DO+1Ep(K) ②2DI+2DO+1Ep(K) ③Event record (SOE) ④2-31th harmonic measurement (H) ⑤2-channel analog output (2M) ⑥1-channel analog output (M)	①34 2345 2346
	single-phase voltage, single-phase current active power, reactive power, apparent power Power factor Frequency Four quadrant energy metering, System time display 1 channel RS485 interface / Modbus-RTU protocol and the statute DLT645.	①2DI+2DO+1Ep(K) ②4DI+2DO(K) ③Event record (SOE) ④Total harmonic measurement (H)	134 234 345

Note:

- 1.DI--Switching input, DO--Switching output, M--Analog output, SOE--Event recording, H--Harmonic measurement, Ep--Electric energy pulse, 96--96 outlian, 72--72 outlian, L-liquid-crystal display (White space is a nixie tube display) , E3-Three-phase three-wire electric energy, E4-Three-phase four-wire electric energy, K-Switching quantity input/output module (I/O module) , C-RS485 communication.
- 2. When the digital tube is displayed, the harmonic data is not displayed, and the data is read only by communication.

- 3.K is a required function, Choose from 12
- 4. When Event record (SOE) is selected, Extreme value and maximum demand (D) are available at the same time.

3. Technical parameters

Picture 2

		1100010 =					
Techi	nical parameters	Value					
	Connection	Single phase-2-wire, 3-phase-4-wire					
	Frequency	45-65Hz					
		Rating:					
		ingle-phase :AC 100V、400V					
		hree-phase: AC 3×57.7V/100V(100V)、3×220V/380V(400V)、					
T ,	Voltage	3×380V/660V(660V)(96 size only)					
Input		Note: 72 profile not suitable for high voltage applications					
		Overload:1.2 fold rating {continuous} : 2 fold rating for 1 second					
		Power consumption:< 0.5VA					
		Rating: AC IA、5A					
	Current	Overload:1.2 fold rating(continuous);10fold rating for 1 second					
		Power consumption:< 0.5VA					
	E1	Output mode:open-collector photo-coupler pulse					
	Electric energy	Pulse constant: 10000imp/kWh(settable), see wiring diagram for details;					
Output	G : .:	RS485port, Modbus -RTU protocol, DLT645 protocol(versions 07 and 97),					
	Communication	eaud rate 1200 ~ 38400					
	Switching input	Dry contact input, built-in power supply;					
E	Cit-lineturet	Output mode: Relay normally open contact output					
Function	Switching output	Contact capacity: AC 250V/3A DC 30V/3A					
	Analog output	1-5V,4 - 20mA					
		Frequency: 0.05Hz, Current Voltage: 0.2 class, Reactive power: 1.0 class, Reactive					
A	ccuracy class	Electric energy:1 .0class, active power:0.5class,active electric energy:					
		0.5class,2-31th harmonic measurement:±1%					
D	ower supply	AC/DC 85-265V or DC24V (±20%) or DC48V(±20%)					
1	ower suppry	power consumption≤10VA					
		Between Power supply//Switching Output// Current Input//voltage Input and					
		Transmitting// Communication //Pulse Output//switching input AC 2 kV 1min;					
	Power frequency	Between Power supply, switching output, Current Input, voltage Input AC 2 kV					
Security	withstand voltage	1min;					
Security		Between Transmitting, Communication, Pulse Output, switching input AC 1kV 1					
		min;					
	Insulation	Input. Output end to machine enclosure $> 100 \mathrm{M}\Omega$					
	resistance						
	-	work: -25°C~+65°C storage: -40°C ~+80°C					
Environm		≤93%RH Non-condensing					
	Altitude	≤2500m					

Note: The instrument Modbus RTU is compatible with dlt645 and only needs to set the corresponding address. See Chapter 6.3 for details.

4 Installation wiring instructions

4.1 Outline and mounting cutout size

Picture 3

O41:	facepl	ate size	ŀ	nousing siz	e	cutout size		
Outline	width	height	width	height	depth	width	height	
72 square	75	75	66.5	66.5	94.3	67	67	
96 square	96	96	86.5	86.5	77.8	88	88	

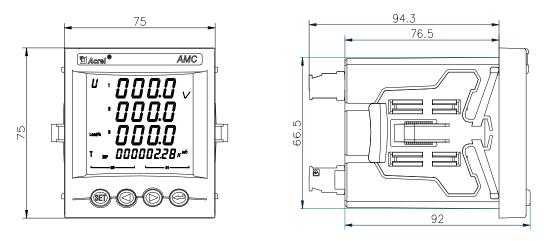


Figure 1 AMC72 appearance size

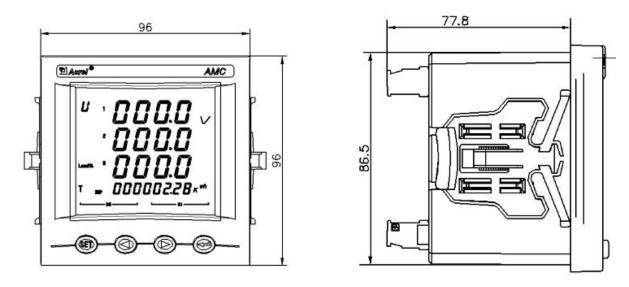
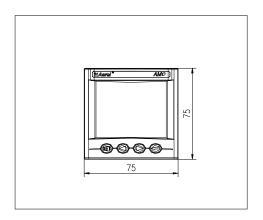



Figure 2 AMC96 appearance size

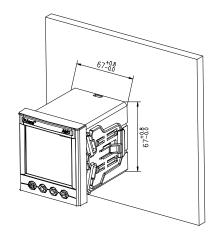
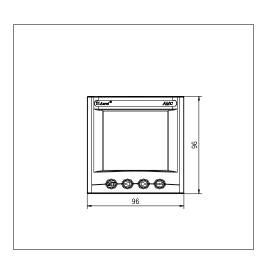



Figure 3 AMC72 installation dimensions

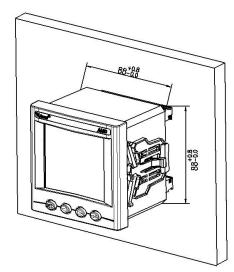


Figure 4 AMC96 installation dimensions

4.2 Installation method

- 1)Opening in fixed distribution cabinet
- 2)Take out the instrument and take out the clip
- 3) The instrument is mounted from the Front to the mounting hole, as shown in figure 5
- 4) Insert the instrument clasp to secure the instrument, as shown in figure 6

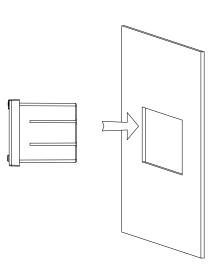
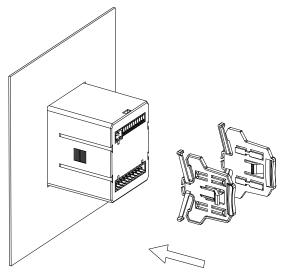
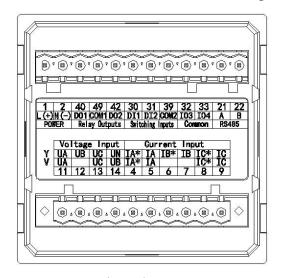
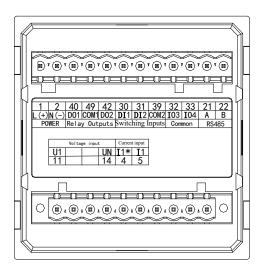


Figure 5


Figure 6

4.3 Wiring method

According to varied design requirements, power and voltage input terminals are recommended with fuse(BS88 1A gG) to meet with the safety performance requirements of prevailing electric codes.

4.3.1 Instrument terminal block and wiring method

three-phase

single-phase

Figure 7 AMC72 series terminal block diagram

Note: Switching input: 32 - DI3, 33 - DI4;

pulse output: 32 - E +, 33 - E-.

Analog output: 32-AO, 33-COM3.

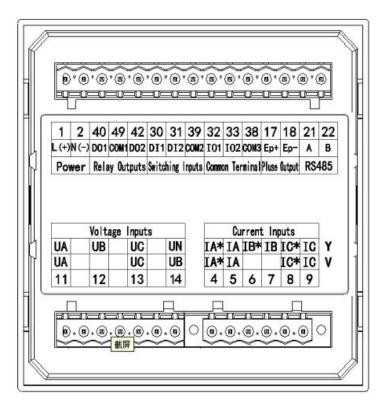
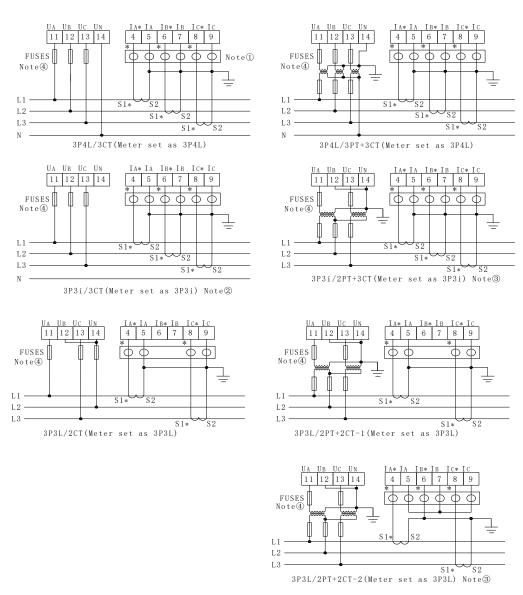


Figure 8 AMC96 series terminal block diagram

Note:

Switching input: 32—DI3, 33—DI4, 38—COM3; pulse output: 32—AO1,33—AO2,38—COM3.


4.3.2 Instrument signal terminal wiring method

Signal terminal: "4,5,6,7,8,9" is the terminal number of the current input; "11,12,13,14" is the terminal number of the voltage input.

Single-phase:

Three-phase

Note③:Phase B displays only current and does not participate in other electricity calculation. Note④:FUSES rated current 1A must be installed.

Figure 9 Schematic diagram of instrument signal wiring

An example of wiring for the communication part is shown below:

Correct wiring method: the communication cable shield is connected to the earth.

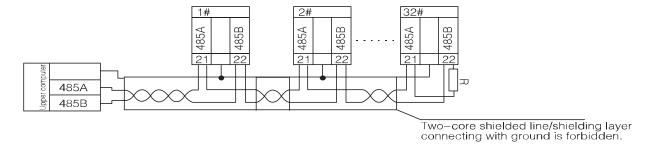


Figure 10 RS485 communication wiring diagram

It is recommended to add a matching resistor between A and B of the end meter, and the resistance range is $120\Omega\sim10~k\Omega$.

5. Operating instructions

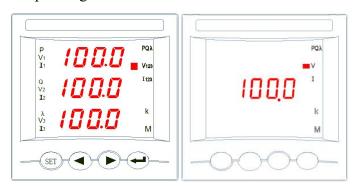


Figure 11 LED front panel

Figure 12 LCD front pane

5.1 Explanation for keypad functionality

Four keys of AMC series intelligent power collection and monitoring device separately indicate SET key, LEFT key, RIGHT key, ENTER key from left to right.

Table 4 key function description

Panel key category	Key Function
SET key (SET)	Under measurement mode, Press This key enter programming mode, meters hint Input password PASS, after Input correct password, set up meters programming; Under programming mode, used for Return to previous menu.
Left key(◀)	Under measurement mode, used for switching Display item; Under programming mode, used for switching same class menu or ones place reduced.
Right key(▶)	Under measurement mode, used for switching Display item; Under programming mode, used for switching same class menu or ones place increase.
ENTER key(←)	Under measurement mode, when Displaying Electric energy data, press This key can look over time sharing multi-rate Electric energy(if any); Programming mode, used for menu item selection confirm and parameter
	revision confirm.

Left key+ENTER	Programming mode, this key combination is used for the reduction of hundreds
key(◄ + ←)	of digits.
Right key+ENTER	
key(▶+ ←)	Programming mode, this key combination is used to increase the hundred digits.

Note: When using the combination key, you can hold down the Left and Right key and then press the Enter key.

5.2 Display Example

5.2.1 The operation steps of checking the current, voltage, power, electric energy and frequency of amc72 / 96 are shown in FIG. 13 and FIG. 14.

AMC72 / 96 three phase watt hour meter:

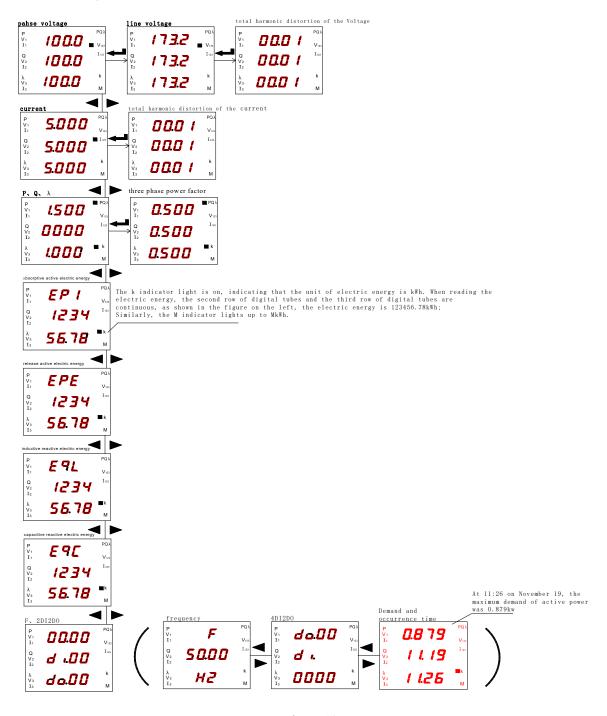


Figure 13

AMC72 single phase watt hour meter:

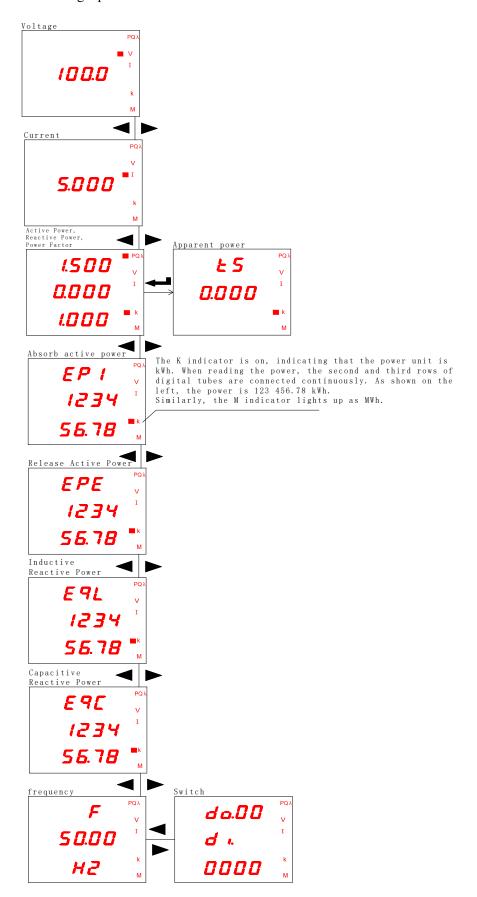


Figure 14

5.2.2 The steps to view the event record of AMC72/96 are shown in Figure 15.

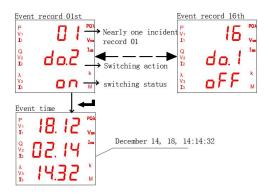


Figure 15

Note: The event record (SOE) can be viewed by pressing the SET key on any interface.

5.2.3 The steps for viewing various types of power parameters of the AMC72L/96L are shown in Figure 16,17. AMC72L/96L three-phase power meter:

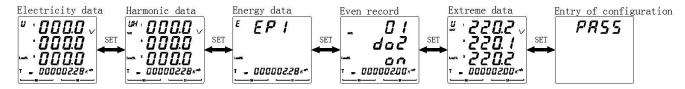


Figure 16

. AMC72L single-phase power:

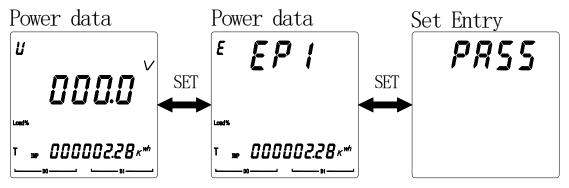


Figure 17

Note: The SET key can be used to switch various types of data, event record (SOE) and extreme value data exist only when SOE function is selected.

5.2.4 View the power parameters of the AMC72L/96L as shown in Figure 18,19. AMC72L/96L three phase electric energy:

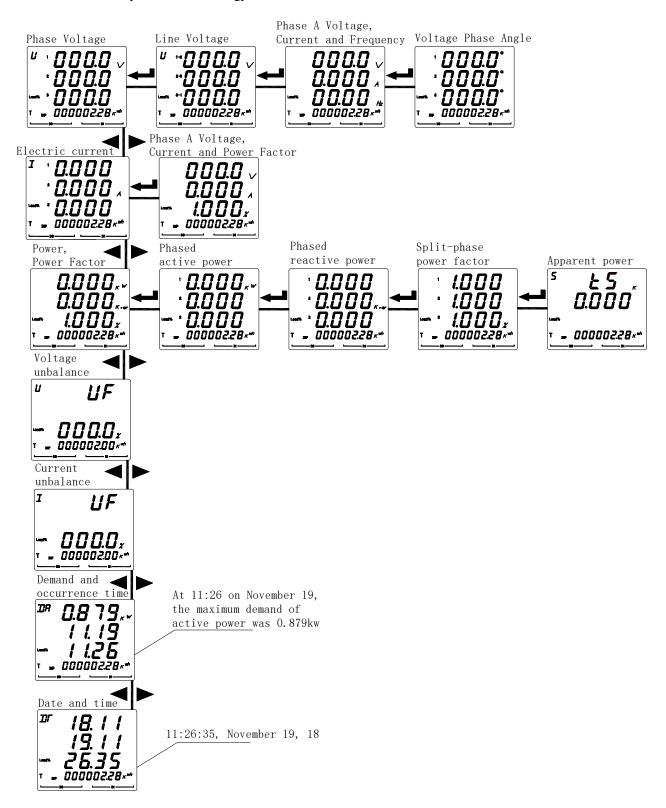


Figure 18

Note: If the meter has an event record (SOE) function, the date and time interface is displayed.

AMC721 single phase electric energy:

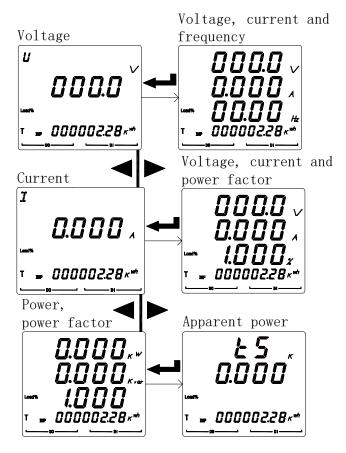


Figure 19

5.2.5 View the harmonic parameters of the AMC72L/96L meter as shown in Figure 20.

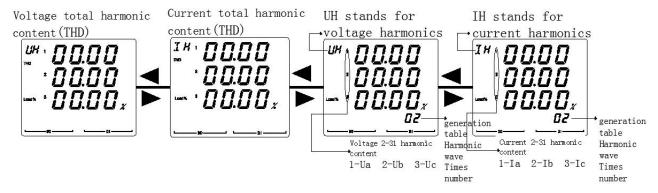


Figure 20.

Note: Only the 96 shape has the function of fractional harmonics; press the left and right buttons to switch the harmonic content of 2-31 times.

5.2.6 View the power parameters of the AMC72L/96L as shown in Figure 21.

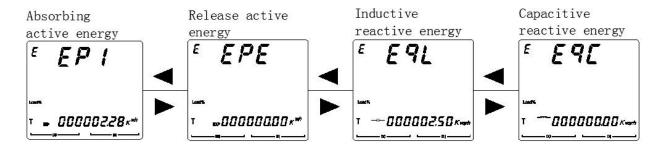


Figure 21

5.2.7 View the AMC72L/96L event record parameters as shown in Figure 22.

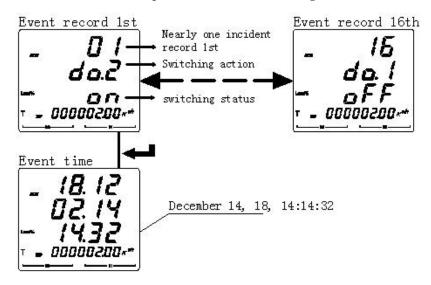


Figure 22

5.2.8 View the extreme value parameters of the AMC72L/96L as shown in Figure 23.

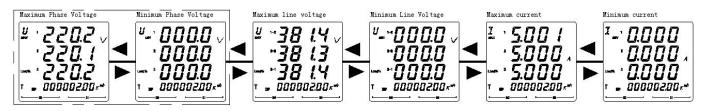


Figure 23

Note: There are no interface voltage maximum value and phase voltage minimum value interface for three-phase three-wire.

5.3 Programming menu

5.3.1 Meter general programming menu

Table 5

First menu	Second menu	Tertiary menu	Description
545	d 15P		Start-up display selection: 0-automatic page turning; other page numbers correspond to the current meter model power parameter interface.

	E o d E	0~9999	Password setting (Initial password 0001)			
	ELr.E		Press ENTER key Electric energy clear			
	ELr.d		Press Enter key, clear demand record			
	[Lr.ñ		Press Enter key, clear demand record			
	EP.E9	E1/E2	Primary(EI) or secondary(E2) energy display option,The default is E1.			
	PLU5	1.6-160.0	Constant of Energy plus(e.g:10.0-10000imp/kWh)			
	<u>E</u> F	EP/EQ	Active pulse (EP), reactive pulse (EQ) switching, default active pulse			
	LinE	3P3L、3P4L	Connection mode(Three-phase-three-wire Three-phase-four-wire)			
ln	tra <u>.U</u>	100V、400V、660V	Input voltage range			
	In. I	1A、5A	Input current range			
	InPE	0~9999	Voltage ratio			
	InEE	0~9999	Current ratio			
	Rddr	1~247	Communication address			
1.115	<i>bRUd</i>	1200、2400、4800、9600、 19200、38400	Communication baud rate			
<i>6U5</i>	ñodE	None/2bit/odd/even	Communication data mode			
	545 Addr	00000000001~ 99999999999	645 Protocol Communication Address			
	5EL	See 5.4.2 for details.	Analog output item selection			
£r.1-£r.2	EYPE	4~20mA Or 0~20mA	Output range			
	Ro.Hi	-9999~9999	High change value setting			
	RoLo	-9999~9999	Low change value setting			

	5EL	See 5.4.3for details.	Alarm item selection			
do. 1 - do.2	al A	0000~9999	Alarm delay or remote control delay			
	bAnd	0000~9999	Hysteresis setting			
	AL.H.	-9999~9999	High alarm value setting			
	ALLo	-9999~9999	Low alarm value setting			
	In.z 🛭		Whether low alarm is allowed when the			
	171.2 [4]		signal is 0			
dALE	Year	Month,day	Set current time			
T InE	Time	Minutes, seconds	Set current time			
uEr			Meter version number and number			

5.3.2 LCD display instrument backlight control menu

Table 6

First menu	Second menu	Tertiary menu	Description
535	b.L.E.d	0-9999	When set to 0, the backlight is always on. When set to 1-9999, the backlight is off after 1-9999 seconds.

5.4 Programming example

The programming example use flow chart to introduce how to change some options of programming menu such as current times, transducer setting etc.

Note: After completing setting or selecting, press ENTER button to confirm, after confirming, pressing SET key until SAVE/YES page appear, now, the ENTER button must be pressed to confirm, otherwise, the setting is invalid.

5.4.1 How to modify the current ratio

For example: the signal is 1000A/5A meter, the ratio setting is shown in Figure 24.

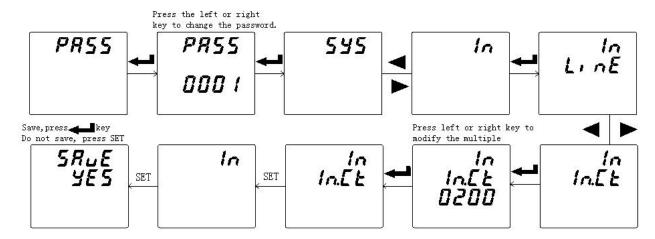


Figure 24

5.4.2 How to modify the analog output settings(Only AMC96 instrument supports analog output function)

For example: set the line voltage Uab to correspond to the first analog 0-20mA output at 19-381V, The settings are shown in Figure 25.

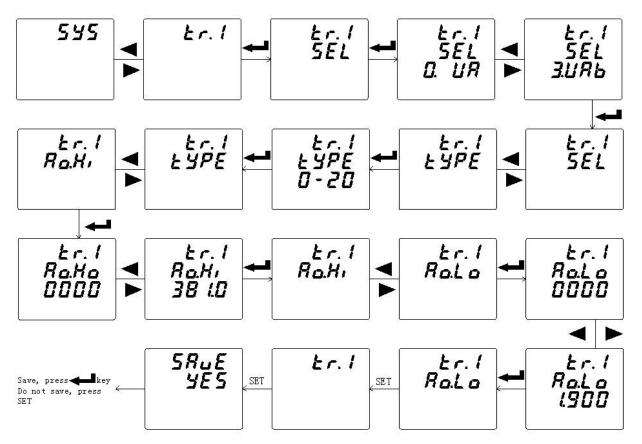


Figure 25

Table 7

Er. 1	First cha	First channel analog output									
	Analog o	Analog output item selection									
		00	01	02	03	04	05	06	07		
		UA	UB	UC	U	UBC	UCA	IA	IB		
					В						
5EL		08	09	10	11	12	13	14	15		
166		IC	PA	PB	PC	Psum	QA	QB	QC		
		16	17	18	19	20	21	22	23		
		Qsum	SA	SB	SC	Ssum	PFA	PFB	PFC		
		24	25								
		PF	F								
<i>E YPE</i>				4~	~20mA Or	0∼20mA					
0.4.	When th	e analog o	output is 20	0mA, the	correspond	ling electri	ical param	eter is take	en as the h	nighest	
$R_{\Phi}H_{\ell}$	four-digi	it integer (t	he decimal	point is ig	nored) and	the last bi	it is zero.				
Rolo	Similar t	o Ao.Hi									

Note: The analog output setting includes the analog output selection, the analog output full scale corresponding value and the analog output zero corresponding value.

The analog output selects different values for different signals, and refers to the analog output item selection. The analog output full scale corresponds to the signal primary side value, that is, the 20 mA output corresponds to the displayed value of the power, and the highest four-digit integer (the decimal point is ignored) is less than 0. If the input is 220V, 100A/5A, three-phase three-wire, the total power is $220kV\times100A\times\sqrt{3}=38.10kW$, the output type is 4-20mA; if 100% total power, the first analog output is 20mA, 0% total power The first analog output 4mA, the first analog output selection (register address 0005H) is set to 12, the first output fullness corresponding value (register address 0006H) can be set to 38.10; the first output zero corresponding value (Register address 0007H) can be set to 0.

5.4.3 Switching/Relay alarm output setting

For example: when the total active power is lower than 3.3kW or higher than 66kW, the first alarm will act after 10 seconds, and Hysteresis setting is 1kW. When the power is 0, the alarm is allowed. The setting is shown in Figure 26.

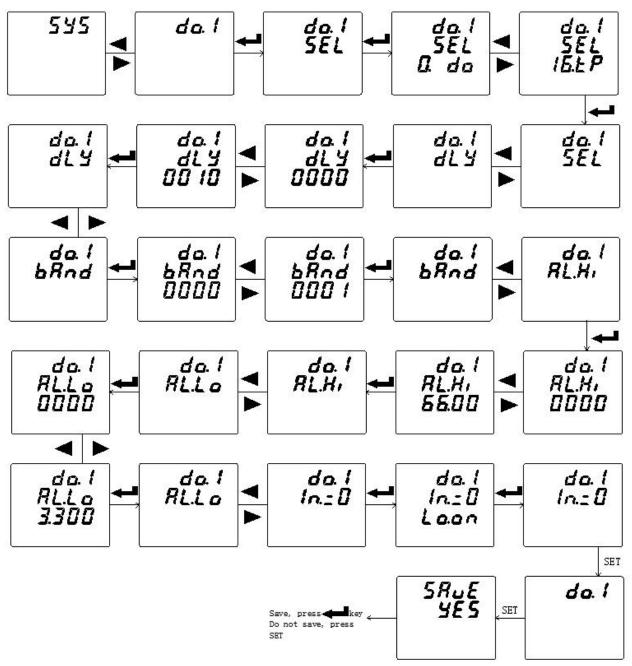


Figure 26

Table 8

do. l	The	The first switching/relay alarm output										
	Ala	Alarm item setting										
		00	01	02	03	()4	05	06	07		
		Remote control	UA	UB	UC	Three-ph phase maximum	voltage	UAB	UBC	UCA		
		08		09	10	11	1	2	13	14		
		hree-phase line maximum v	voltage value	IA	IB	IC	current n	-phase naximum lue	PA	PB		
5EL		15	16	17	18	19	20	21	22	23		
		PC	Psum	QA	QB	QC	Qsum	SA	SB	SC		
		24	25	26	27	28	29	30		31		
		Ssum	PFA	PFB	PFC	PF	F	Voltag imbalar		Current mbalance		
				33			34					
		DI1(DI2(<u>Linkage</u>)			FL (Combined alarm)					
		The corresponding channel "In.=0" needs to be set to "Lo.on"							The second way DO can be set			
dL Y	am	en the alarm ite ount is activated en the alarm ite on.	1.	·								
bAnd	Hy	steresis setting										
AL.H.	Hig	High alarm value setting (do not set the maximum 9999)										
ALL o	Lov	w alarm value s	etting (do	not set n	ninimum	-9999)						
In.z 🛭	Wh	ether low alarm	ı is allow	ed when	the signal	l is 0, Lo.	on is enal	oled, Lo.	of is fort	oidden		

Note:

- 1. Hysteresis setting, high alarm value setting and low alarm value setting correspond to the display value of the battery, and the display contains a decimal point.e.g. input 220V 100A/5A, three phase four wire, 100% P total as 220*100*3=66kW, e.g. 100% power high alarm, "AL.Hi" taken as 66.00; 100% voltage high alarm, "AL.Hi" taken as 220.0; 100% current high alarm, "AL.Hi" taken as 100.0
- 2.Indication of three phase XX maximum/minimum value: high alarm represents maximum value of three phase; low alarm represents minimum value of three phase
- 3.Secondary DO to be set as "34.FL" combination alarm function; after setting, level II menu changed as "SEL" (function selection), "dLy" (delay), "H-U" (high voltage), "L-U" (low voltage), "H-F" (high frequency), "L-F" (low frequency), "H-I" (high current), "L-PF" (low power factor), "H-b.U" (over voltage unbalance, set as -1 phase miss, judgment condition at least one phase>0.5Ue, at least one phase<0.1Ue), "H-b.I" (over current unbalance, set as -1 phase miss, judgment condition at least one phase>0.2Ie, at least one phase<0.01Ie).
 - 4. Unbalance calculation

(Difference between maximum deviation from the mean value and mean value)/mean value *100%,if the mean value of denominator is less than the rated value, the denominator is rated value; voltage rated value Ue; 3 phase 4 wire Ue as the phase voltage, menu setting 400V instrument as 220V*PT, 100V instrument as 57V*PT.Current rated value Ie: 5A instrument as 5A*CT, 1A instrument as 1A*CT.

Unbalance set parameter in percentage, e.g. 20 means 20%.

6 Communication

6.1 Register listing(MODBUS-RTU)

Table 9

Address	Parameter	Read or write	Value range	Data type
0000H	Password saved	R/W	0001-9999	Uint16
0001H high byte	Communication address	R/W	0001-0247	Uint16
0001H low byte	Communication baud rate	R/W	0-3: 38400、19200、 9600、4800bps	Umito
0002Н	Control character	R/W	8th bit-connection mode (0-3-phase-4-we, 1-3-phase-3-wire) 7th bit-input voltage range (0-400V, 1-100V) second bit-input current range (0-5A, 0-1 A)	Uint16
0003H	PT transformation ratio	R/W	1-9999	Uint16
0004H	CT transformation ratio	R/W	1-9999	Uint16
0005H	First analog output parameter setting Analog output selection	R/W	The low byte is valid, and the corresponding parameter refers to the SEL correspondence in 5.4.2.	Uint16
0006Н	First analog output parameter setting Analog output full scale corresponding value	R/W	-9999~9999(Same as analog output setting menu 5.4.2 in Ao.Hi)	Int16
0007Н	First analog output parameter setting Analog output zero point corresponding value	R/W	-9999~9999(Same as analog output setting menu 5.4.2 in Ao.Lo)	Int16
0008H-000AH	Second analog output parameter setting	R/W	Same as the first analog output parameter setting	Uint16
000BH-000D H	Third analog output parameter setting	R/W		Uint16
000EH-0010H	Fourth analog output parameter setting	R/W	Same as the first analog output parameter setting	Uint16
0011H high byte	Backlight control	R/W	Only applied to LCD Display meters 0= lights	Uint16
0012H	rt-1 hour, rt-1 minute	R/W	high byte:rt-1 hour, low byte:rt-1 minute	Uint16

			,			
0013H	rt-1 multiple rate, rt-2 hour	R/W	high byte:rt8-rt1 multiple rate(1 sharp, 2 peak, 3 flat, 4 valley), low byte:rt-2 hour			
0014H	rt-2 minute, rt-2 multiple rate	R/W	high byte:rt-2 minute, low byte:rt1-rt2 multiple rate(1 sharp, 2 peak, 3 flat, 4 valley)	Uint16		
0015H-0017H	Rt-3, rt4 setting	R/W	Same as rt-1, rt-2 setting	Uint16		
0018H-001AH	rt-5, rt6 setting	R/W	Same as rt-1, rt-2 setting	Uint16		
001BH-001D H	rt-7, rt8 setting	R/W	Same as rt-1, rt-2 setting	Uint16		
001ЕН~ 0020Н	Date time setting	R/W	Year, Month, Day, Hour, Minute, Second	Uint16		
0021H high byte	Automatic meter reading day	R/W	Month, day	Uint16		
0021H low byte	Current time rate	R/W	1 sharp, 2 peak, 3 flat, 4 valley	Cintro		
0022Н	Switching input and output status	R/W	See 6.2.1	Uint16		
0023H high byte	Decimal point U (DPT)		3~7	Uint16		
0023H low byte	Decimal point I (DCT)	R	1~5	Omitio		
0024H high byte	Decimal point PQ (DPQ)	R	4~10			
0024H low byte	Symbol PQ	R	High byte-low byte:Q、Qc、Qb、Qa、P、Pc、Pb、Pa; 0 is positive and 1 is negative	Uint16		
	The followin	g is the prin	nary side power parameter			
0025H	UAN	R	0-9999 (see 6.2.2 for conversion formula)	Uint16		
0026H	UBN	R	0-9999 (see 6.2.2 for conversion formula)	Uint16		
0027H	UCN	R	0-9999 (see 6.2.2 for conversion formula)	Uint16		
0028H	UAB	R	0-9999 (see 6.2.2 for conversion formula)	Uint16		
0029H	UBC	R	0-9999 (see 6.2.2 for conversion formula)	Uint16		
002AH	UCA	R	0-9999 (see 6.2.2 for conversion formula)	Uint16		
002BH	IA	R	R 0-9999 (see 6.2.2 for conversion formula)			
002CH	IB	R 0-9999 (see 6.2.2 for conversion formula)		Uint16		
002DH	IC	R 0-9999 (see 6.2.2 for conversion formula)		Uint16		
002EH	PA	R	0-9999 (see 6.2.2 for conversion formula)	Uint16		
002FH	PB	R	0-9999 (see 6.2.2 for conversion formula)	Uint16		
0030H	PC	R	0-9999 (see 6.2.2 for conversion formula)	Uint16		
0031H	Psum	R	0-9999 (see 6.2.2 for conversion formula)	Uint16		

0032H	QA	R	0-9999 (see 6.2.2 for conversion formula)	Uint16
0033H	QB	R	0-9999 (see 6.2.2 for conversion formula)	Uint16
0034H	QC	R	0-9999 (see 6.2.2 for conversion formula)	Uint16
0035H	Qsum	R	0-9999 (see 6.2.2 for conversion formula)	Uint16
0036Н	PFA	R	0-1000 (see 6.2.2 for conversion formula)	Uint16
0037H	PFB	R	0-1000 (see 6.2.2 for conversion formula)	Uint16
0038H	PFC	R	0-1000 (see 6.2.2 for conversion formula)	Uint16
0039Н	PFsum	R	0-1000 (see 6.2.2 for conversion formula)	Uint16
003AH	SA	R	0-9999 (see 6.2.2 for conversion formula)	Uint16
003BH	SB	R	0-9999 (see 6.2.2 for conversion formula)	Uint16
003CH	SC	R	0-9999 (see 6.2.2 for conversion formula)	Uint16
003DH	Ssum	R	0-9999 (see 6.2.2 for conversion formula)	Uint16
003EH	F	R	4500-6500(see 6.2.2 for conversion formula)	Uint16
I	The foll	owing is the	energy address table	
003FH∼	Absorptive active electric		0-99999999(see 6.2.2 for conversion	771 22
0040Н	energy secondary side	R	formula)	Uint32
0041H∼	Release active electric	R	0-99999999(see 6.2.2 for conversion	Uint32
0042H	energy secondary side	K	formula)	
0043H∼	Inductive reactive electric energy secondary	R	0-99999999(see 6.2.2 for conversion	Uint32
0044H	side Capacitive reactive		formula)	TI: +32
0045H∼	electric energy secondary	R	0-99999999(see 6.2.2 for conversion	Uint32
0046H	side		formula)	Float
0047H∼ 0048H	absorptive active electric energy primary side (consumer electricity consumption)	R	(see 6.2.2 for conversion formula)	Float
0049H∼ 004AH	Release active electric energy primary side	R	(see 6.2.2 for conversion formula)	Float
004BH∼ 004CH	Inductive reactive electric energy primary side	R	(see 6.2.2 for conversion formula)	Float
004DH∼ 004EH	Capacitive reactive electric energy primary side	R	(see 6.2.2 for conversion formula)	Float
	The following is the primar	y side zero se	equence voltage and current address table	
			0-9999(see 6.2.2 for conversion formula)	Uint16
0074Н	Zero sequence voltage	R	0-9999(see 0.2.2 for conversion formula)	Cintio
0074H 0075H	Zero sequence voltage Zero sequence current	R R	0-9999(see 6.2.2 for conversion formula)	Uint16
	1 0		, , ,	
0075H	Zero sequence current	R	0-9999(see 6.2.2 for conversion formula)	Uint16
0075H 0076H	Zero sequence current Current percentage Voltage current phase	R R	0-9999(see 6.2.2 for conversion formula) Unit 0.01%	Uint16 Uint16
0075H 0076H 0077H	Zero sequence current Current percentage Voltage current phase sequence state	R R R	0-9999(see 6.2.2 for conversion formula) Unit 0.01% 高位: 电流,低位: 电压 0: 正常 1: 错误	Uint16 Uint16 Uint16

	The following is	s the voltage	phase parameter address table			
008CH	Voltage UA phase angle	R	R 0-9999 (1 decimal place, example 1200 means 120.0)			
008DH	Voltage UB phase angle	R	0-9999 (1 decimal place, example 1200 means 120.0)	Uint16		
008EH	Voltage UC phase angle	R	0-9999 (1 decimal place, example 1200 means 120.0)	Uint16		
	The follow	ving is the ev	ent record address table.			
008FH~ 0094Н	Event record 1st	R	See 6.2.3 event record table 10 for details	Uint16		
0095H∼ 009AH	Event record 2nd	R	See 6.2.3 event record table 10 for details	Uint16		
009BH∼ 00A0H	Event record 3rd	R	See 6.2.3 event record table 10 for details	Uint16		
00A1H∼ 00A6H	Event record 4th	R	See 6.2.3 event record table 10 for details	Uint16		
00A7H∼ 00ACH	Event record 5th	R	See 6.2.3 event record table 10 for details	Uint16		
00ADH∼ 00B2H	Event record 6th		See 6.2.3 event record table 10 for details	Uint16		
00B3H∼ 00B8H	Event record 7th	R	See 6.2.3 event record table 10 for details	Uint16		
00B9H∼ 00BEH	Event record 8th	R	See 6.2.3 event record table 10 for details	Uint16		
00BFH∼ 00C4H	Event record 9th	R	See 6.2.3 event record table 10 for details	Uint16		
00C5H∼ 00CAH	Event record 10th	R	See 6.2.3 event record table 10 for details	Uint16		
00СВН~ 00D0Н	Event record 11th	R	See 6.2.3 event record table 10 for details	Uint16		
00D1H∼ 00D6H	Event record 12th	R	See 6.2.3 event record table 10 for details	Uint16		
00D7H∼ 00DCH	Event record 13th	R	See 6.2.3 event record table 10 for details	Uint16		
00DDH∼ 00E2H	Event record 14th	R	See 6.2.3 event record table 10 for details	Uint16		
00E3H∼ 00E8H	Event record 15th	R	See 6.2.3 event record table 10 for details	Uint16		

		T _	T	T
00E9H∼	Event record 16th	R	See 6.2.3 event record table 10 for details	Uint16
00EEH				TT' 14.6
0130H~	Event record 1st	R	See 6.2.3 event record table 11 for details	Uint16
0137H				TT 1.6
0138H~	Event record 2nd	R	See 6.2.3 event record table 11 for details	Uint16
013EH				TT' -11.6
013FH~	Event record 3rd	R	See 6.2.3 event record table 11 for details	Uint16
0145H		_		
0146H~	Event record 4th	R	See 6.2.3 event record table 11 for details	Uint16
014CH		_		
014DH~	Event record 5th	R	See 6.2.3 event record table 11 for details	Uint16
0153H		_		
0154H~	Event record 6th	R	See 6.2.3 event record table 11 for details	Uint16
015AH		_		
015BH∼	Event record 7th	R	See 6.2.3 event record table 11 for details	Uint16
0161H				
0162H∼	Event record 8th	R	See 6.2.3 event record table 11 for details	Uint16
0168H		_		
0169H∼	Event record 9th	R	See 6.2.3 event record table 11 for details	Uint16
016FH		_		
0170H∼	Event record 10th	R	See 6.2.3 event record table 11 for details	Uint16
0176H		_		
0177H∼	Event record 11th	R	See 6.2.3 event record table 11 for details	Uint16
017DH				
017EH∼	Event record 12th	R	See 6.2.3 event record table 11 for details	Uint16
0184H				
0185H∼	Event record 13th	R	See 6.2.3 event record table 11 for details	Uint16
018BH				
018CH∼	Event record 14th	R	See 6.2.3 event record table 11 for details	Uint16
0192H				
0193H∼	Event record 15th	R	See 6.2.3 event record table 11 for details	Uint16
018FH				
019AH∼	Event record 16th	R	See 6.2.3 event record table 11 for details	Uint16
0190H				
		_	dary side power parameters	
0100H	UAN	R	0-9999 (1 decimal place, unit V)	Uint16
0101H	UBN	R	0-9999 (1 decimal place, unit V)	Uint16
0102H	UCN	R	0-9999 (1 decimal place, unit V)	Uint16
0103H	UAB	R	0-9999 (1 decimal place, unit V)	Uint16

0104H	UBC	R	0-9999 (1 decimal place, unit V)	
0105H	UCA	R	0-9999 (1 decimal place, unit V)	Uint16
0106Н	IA	R	0-9999 (3 decimal places, unit I)	Uint16
0107H	IB	R	0-9999 (3 decimal places, unit I)	Uint16
0108H	IC	R	0-9999 (3 decimal places, unit I)	Uint16
0109H	PA	R	0-9999 (3 decimal places, unit kw)	Int16
010AH	PB	R	0-9999 (3 decimal places, unit kw)	Int16
010BH	PC	R	0-9999 (3 decimal places, unit kw)	Int16
010CH	Psum	R	0-9999 (3 decimal places, unit kw)	Int16
010DH	QA	R	0-9999 (3 decimal places, unit kvar)	Int16
010EH	QB	R	0-9999 (3 decimal places, unit kvar)	Int16
010FH	QC	R	0-9999 (3 decimal places, unit kvar)	Int16
0110H	Qsum	R	0-9999 (3 decimal places, unit kvar)	Int16
0111H	PFA	R	-1000 to 1000 (3 decimal places)	Int16
0112H	PFB	R	-1000 to 1000 (3 decimal places)	Int16
0113H	PFC	R	-1000 to 1000 (3 decimal places)	Int16
0114H	PFsum	R	-1000 to 1000 (3 decimal places)	Int16
0115H	SA	R	0-9999 (3 decimal places, unit VA)	Uint16
0116H	SB	R	0-9999 (3 decimal places, unit VA)	Uint16
0117H	SC	R	0-9999 (3 decimal places, unit VA)	Uint16
0118H	Ssum	R	0-9999 (3 decimal places, unit VA)	Uint16
0119H	F	R	4500-6500 (2 decimal places)	Uint16
011AH	Zero sequence voltage	R	0-9999 (1 decimal place, unit V)	Uint16
011BH	Zero sequence current	R	0-9999 (3 decimal places, unit I)	Uint16
	DO	setting and s	tatus read address	
025DH	Communication mode	R/W	0: None 1: 2 Stop 2: Odd 3: Even	Uint16
025EH	Pulse constant setting	R/W	16-1600 100 stands for 10000imp/kWh	Uint16
025FH	DIDO status	R		Uint16
0260Н	DO1 alarm selection	R/W	0000-9999 (same as DO setting menu 5.3.3 in SEL)	Uint16
0261H	DO1 alarm delay	R/W	0000-9999 (same as DO setting menu 5.3.3 DLY)	Uint16
0262Н	DO1 hysteresis setting	R/W	0000-9999 (same as DO setting menu 5.4.3 bAnd)	Uint16
0263Н	DO1 high alarm value	R/W	-9999~9999 (with the DO setting menu 5.3.3 AL.Hi)	Int16
0264Н	DO1 low alarm value	R/W	-9999 ~ 9999 (along with DO setting menu 5.3.3 AL.Lo)	Int16

0265H	DO1 low alarm enable	R/W	Enable at 0 (same as DO setting menu 5.4.3 in In.=0)	Uint16		
0266Н-026ВН	DO2 alarm settings	R/W	R/W Same as DO1 alarm setting, high and low voltage value and voltage value in DO2 combination alarm			
026CH-0271H	DO3 alarm settings	R/W	Same as DO1 alarm setting	Uint16		
0272H-0277H	DO4 alarm settings	R/W	Same as DO1 alarm setting	Uint16		
0278H	DLT645 address setting	R/W	High four-bit address, hex form	Uint16		
0279H	DLT645 address setting	R/W	Medium four-bit address, hex form	Uint16		
027AH	DLT645 address setting	R/W	Low four-bit address, hex form	Uint16		
027BH	DO2 combination alarm over frequency value	R/W	0000-9999 (same as DO2 setting menu 5.4.3 H-F)	Uint16		
027CH	DO2 combination alarm underfrequency value	R/W	0000-9999 (same as DO2 setting menu 5.5.3 L-F)	Uint16		
027DH	DO2 combination alarm over power value	R/W	$-9999 \sim 9999$ (the same as the DO2 setting menu 5.4.3 H-P)	Int16		
027EH	DO2 combination alarm underpower value	R/W	$-9999 \sim 9999$ (L-P in the same DO2 setting menu 5.4.3)	Int16		
027FH	DO2 combination alarm over current value	R/W	0000-9999 (the same as the DO2 setting menu 5.4.3 H-I)	Uint16		
0280H	DO2 combination alarm underpower factor value	R/W	-1000 to 1000 (L-PF in the same setting as the DO2 setting menu 5.4.3)	Int16		
0281H	DO2 combination alarm overvoltage imbalance value	R/W	-1 to 999 (H-b.U in the same setting as the DO2 setting menu 5.4.3)	Int16		
0282Н	DO2 combination alarm overcurrent imbalance value	R/W	-1 to 999 (H-b.I in the same setting as the DO2 setting menu 5.4.3)	Int16		
O3E8H Alarm status of DO2 combined alarm		R	bit0="H- U" (high voltage) bit1="L- U" (low voltage) bit2="H- F" (high frequency) bit3="L- F" (low frequency) bit4="H- P" (high power) bit5="L- P" (low power) bit6="H- I" (high current) bit7="L- PF" (low power factor) bit8="H- b.U" (over voltage unbalance, set as -1 phase miss) bit9="H- b.I" (Current imbalance)	Uint16		

03E9H	DO1 current alarm value	R	0000-9999	Uint16
03EAH	DO2 current alarm value	R	0000-9999	Uint16
03EBH	DO3 current alarm value	R	0000-9999	Uint16
03ECH	DO4 current alarm value	R	0000-9999	Uint16
02EDH	DO2 combination alarm	D	0000 0000	II:41.6
03EDH	current overvoltage value	R	0000-9999	Uint16
03EEH	DO2 combination alarm	R	0000 0000	I I:
USEEH	current undervoltage value	K	0000-9999	Uint16
	DO2 combination alarm			
03EFH	current over frequency	R	0000-9999	Uint16
	value			
	DO2 combination alarm			
03F0H	current underfrequency	R	0000-9999	Uint16
	value			
025111	DO2 combination alarm	ъ	0000 0000	TT' 11.6
03F1H	current overpower value	R	0000-9999	Uint16
0.2.02.1	DO2 combination alarm	-	0000 0000	Uint16
03F2H	current underpower value	R	0000-9999	
025211	DO2 combination alarm	_	0000 0000	TT' .1.6
03F3H	current overcurrent value	R	0000-9999	Uint16
02544	DO2 combination alarm		0000 0000	TT' .1.6
03F4H	underpower factor value	R	0000-9999	Uint16
	DO2 combination alarm			
03F5H	overvoltage imbalance	R	0000-9999	Uint16
	value			
	DO2 combination alarm			
03F6H	overcurrent imbalance	R	0000-9999	Uint16
	value			
	The following	ng is an addr	ess table with H function	ı
0.40077	A Phase voltage total	-	0-9999 (2 decimal places, example 200 means	TIT of 6
0400H	harmonic distortion rate	R	2%)	Uint16
0.40477	B Phase voltage total	-	0-9999 (2 decimal places, example 200 means	TIT' of S
0401H	harmonic distortion rate	R	2%)	Uint16
0.40277	C Phase voltage total	-	0-9999 (2 decimal places, example 200 means	TIT' of S
0402H	harmonic distortion rate	R	2%)	Uint16
0.40277	A Phase current total	-	0-9999 (2 decimal places, example 200 means	TIT of 6
0403H	harmonic distortion rate	R	2%)	Uint16
0.40.477	B Phase current total		0-9999 (2 decimal places, example 200 means	TT' of S
0404H	harmonic distortion rate	R	2%)	Uint16
		I	1	I

0405H	C Phase current total harmonic distortion rate	R	0-9999 (2 decimal places, example 200 means 2%)	Uint16	
0406Н	A Phase voltage harmonic value	R	0-9999 (secondary side value, decimal point 1 bit, unit V)	Uint16	
0407Н	B Phase voltage harmonic value	R	0-9999 (secondary side value, decimal point 1 bit, unit V)	Uint16	
0408H	C Phase voltage harmonic value	R	0-9999 (secondary side value, decimal point 1 bit, unit V)	Uint16	
0409Н	A Phase current harmonic value	R	0-9999 (secondary side value, decimal point 3 bits, unit A)	Uint16	
040AH	B Phase current harmonic value	R	0-9999 (secondary side value, decimal point 3 bits, unit A)	Uint16	
040BH	C Phase current harmonic value	R	0-9999 (secondary side value, decimal point 3 bits, unit A)	Uint16	
040CH-0429H	A Phase voltage 2-31 harmonic distortion rate	R	0-9999 (2 decimal places, example 200 means 2%)	Uint16	
042AH-0447H	B Phase voltage 2-31 harmonic distortion rate	R	0-9999 (2 decimal places, example 200 means 2%)	Uint16	
0448H-0465H	C Phase voltage 2-31 harmonic distortion rate	R	0-9999 (2 decimal places, example 200 means 2%)	Uint16	
0466Н-0483Н	A Phase current 2-31 harmonic distortion rate	R	0-9999 (2 decimal places, example 200 means 2%)	Uint16	
0484H-04A1H	B Phase current 2-31 harmonic distortion rate	R	0-9999 (2 decimal places, example 200 means 2%)	Uint16	
04A2H-04BF H	C Phase current 2-31 harmonic distortion rate	R	0-9999 (2 decimal places, example 200 means 2%)	Uint16	
04C0H-04DD H	A Phase voltage 2-31 harmonic value	R	0-9999 (secondary side value, decimal point 1 bit, unit V)	Uint16	
04DEH-04FB H	B Phase voltage 2-31 harmonic value	R	0-9999 (secondary side value, decimal point 1 bit, unit V)	Uint16	
04FCH-0519H	C Phase voltage 2-31 harmonic value	R	0-9999 (secondary side value, decimal point 1 bit, unit V)	Uint16	
051AH-0537H	A Phase current 2-31 harmonic value	R	0-9999 (secondary side value, decimal point 3 bits, unit A)	Uint16	
0538Н-0555Н	B Phase current 2-31 harmonic value	R	0-9999 (secondary side value, decimal point 3 bits, unit A)	Uint16	
0556Н-0573Н	C Phase current 2-31 0-9999 (secondary side value, decimal po				
	The followi	ng is the ext	reme value address table		

0600H	A Phase voltage maximum	R	0-9999 (secondary side value)	Uint16		
0601H	A phase voltage maximum value occurs year, month	R	High bit:year, low bit:month	Uint16		
0602H	A phase voltage maximum value occurs day, hour	R	R High bit:day, low bit:hour			
0603Н	A maximum value of the phase voltage occurs minutes, seconds	R	High bit:minute, low bit:second	Uint16		
0604Н-0607Н	B phase voltage maximum value and occurrence time	R	(The same as the A phase voltage extreme value)	Uint16		
0608H-060BH	C phase voltage maximum value and occurrence time	R	(The same as the A phase voltage extreme value)	Uint16		
060CH-060FH	A line voltage maximum value and occurrence time	R	(The same as the A phase voltage extreme value)	Uint16		
0610H-0613H	B line voltage maximum value and occurrence time	R	(The same as the A phase voltage extreme value)	Uint16		
0614H-0617H	C line voltage maximum value and occurrence time	R	(The same as the A phase voltage extreme value)	Uint16		
0618H-061BH	A phase current maximum value and occurrence time	R	(The same as the A phase voltage extreme value)	Uint16		
061CH-061FH	B phase current maximum value and occurrence time	R	(The same as the A phase voltage extreme value)	Uint16		
0620H-0623H	C phase current maximum value and occurrence time	R	(The same as the A phase voltage extreme value)	Uint16		
0680Н-0683Н	A phase voltage minimum value and occurrence time	R	(The same as the A phase voltage extreme value)	Uint16		
0684Н-0687Н	B phase voltage minimum value and occurrence time	R	(The same as the A phase voltage extreme value)	Uint16		
0688H-068BH	C phase voltage minimum value and occurrence time	R	(The same as the A phase voltage extreme value)	Uint16		
068CH-068FH	A line voltage minimum value and occurrence time	R	(The same as the A phase voltage extreme value)	Uint16		
0690Н-0693Н	B line voltage minimum value and occurrence time	R	(The same as the A phase voltage extreme value)	Uint16		
0694Н-0697Н	C line voltage minimum value and occurrence time	R	(The same as the A phase voltage extreme value)	Uint16		
0698H-069BH	A phase current minimum value and occurrence time	R	(The same as the A phase voltage extreme value)	Uint16		

069CH-069FH	B phase current minimum value and occurrence time	R	(The same as the A phase voltage extreme value)	Uint16
06A0H-06A3 H	C phase current minimum value and occurrence time	R	(The same as the A phase voltage extreme value)	Uint16
0700H	Voltage imbalance	R	0-9999 (1 decimal place, example 20 means 2%)	Uint16
0701H	Current imbalance	R	0-9999 (1 decimal place, example 20 means 2%)	Uint16

6.2 Communication application

The AMC series intelligent power collection and monitoring device has unified planning of the communication address table during design. The user can conveniently realize the functions of telemetry, remote signaling and remote control according to the following description.

6.2.1 Switching input and output

The switching input of AMC series intelligent power collection and monitoring device adopts dry contact switch signal input mode. The instrument is equipped with working power supply, no external power supply is required. When the external contact is closed or disconnected, the meter displays the switch status locally, and the remote transmission function can be realized through the communication port of the meter, that is, the "remote message" function.

The switching output of AMC series intelligent power collection and monitoring device is relay output, which can be remotely controlled by the host computer (the remote control has two modes: 1, level trigger; 2. pulse trigger) to realize the "remote control" function, or according to customer requirements. Implement the corresponding alarm function (such as over current, under voltage).

The communication address of the AMC series intelligent power collection monitoring device and the digital switching input and switching output is 0022H, and its correspondence with the digital input and output is as follows:

	16	15	14	13	12	11	10	9	8~1
0022H			DO	DO	DI	DI	DI	DI	D 1
			2	1	4	3	2	1	Reserved

6.2.2 Power parameters and electrical energy

The series of measured values are read by the command No. 03 of the Modbus-RTU communication protocol. The correspondence between the communication value and the actual value is as follows: (Agreed Val_t is the communication read value, Val_s is the actual value).

1. Phase voltage UA, UB, UC, line voltage UAB, UBC, UCA, zero sequence voltage:

Val s=Val t×10 ^ (DPT-4), Unit volt V, DPT is read from the high byte of 0023H.

2. Current IA, IB, IC, zero sequence current:

Val s=Val t×10 ^ (DCT-4), Unit Ampere A, DCT is read from the low byte of 0023H.

3. Power PA, PB, PC, Psum, QA, QB, QC, Qsum:

Val_s=Val_t×10 ^ (DPQ-4), Active power unit watt W, reactive power unit var, DPQ read from 0024H high byte, active power and reactive power symbols from 0024H low byte (from high to low, Q, Qc, Qb, Qa,

P, Pc, Pb, Pa) read.

4. Power factor values PFA, PFB, PFC, PFsum:

Val s=Val t/1000, No unit

5.Frequency:

Val_s=Val_t/100, Unit Hertz Hz

6.Electrical energy:

For the AMC series intelligent power collection and monitoring device, the following a and b methods can be used to read the electric energy, and the user can select according to the actual situation.

a) Read address 003FH~0040H (absorbed active energy), 0041H~0042H (release active energy), 0043H~0044H (inductive reactive energy), 0045H~0046H (capacitive reactive energy) secondary energy, read again PT, CT, calculated according to the following formula:

Electrical energy communication readout value Val t=first word × 65536 + second word

The primary value of electric energy is Val_s=Val_t/1000×PT×CT, the unit of active energy: kilowatt hour (kWh), and the unit of reactive energy: kilowatt hour (kvarh). The PT is read from the address 0003H, and the CT is read from the address 0004H.

Note: In general, the user reads the absorbed active energy.

6.2.3 Event Record

Event record 1st - Event record 16th, recorded in order of time, that is, event record 1st records the data of the event that occurred recently, and event record 16th records the data of the early event. The data format of each event record is shown in Table 10:

Table 10 Event record data format 1

	High 8 bits	Low 8 bits	
Address 1	Bit 0 (lowest bit): 0 is DO, 1 is DI	Switching serial number:	
	7th bit (highest bit): 0 is open and 1 is	0 is the first road, 1 is the second road,	
	closed	and so on.	
Address 2	Alarm type: see 5.4.3	Combined alarm type note	
Address 3	Year	Month	
Address 4	Day	Hour	
Address 5	Minute	Second	
Address 6	The value at the time of the alarm (the minimum value of the three phases is recorded		
	when the phase is broken)		

Note: 0-high voltage, 1-low voltage, 2-high frequency, 3-low frequency, 4-high power, 5-low power, 6-high current, 7-low power factor,8-high voltage Balanced, 9-high current imbalance

Table 10 Event record data format 2

	High 8 bits	Low 8 bits		
Address 1	Bit 0 (lowest bit): 0 is DO, 1 is DI	Switching serial number:		
	7th bit (highest bit): 0 is open and 1 is	0 is the first road, 1 is the second road,		
	closed	and so on.		
Address 2	Alarm type: see 5.4.3	Combined alarm type		
Address 3	Year	Month		
Address 4	Day	Hour		
Address 5	Minute	Second		
Millisecond				
Address 6	The value at the time of the alarm (the minimum value of the three phases is recorded			
	when the phase is broken)			

Example: DO1 is the A-phase voltage alarm. When the under-voltage alarm occurs at 14:56:32 on January 22, 15th, the alarm value is 172.2V, the corresponding register value is shown in Table.

	High 8 bits	Low 8 bits
Address 1	128	0
Address 2	1	0
Address 3	15	1
Address 4	22	14
Address 5	56	32
Address 6	1722	

7 Common fault analysis

Common fault analysis and elimination

Fault content	Analysis	Remarks
No display after power on	Check if the power supply voltage is within the operating voltage	
	range	
Voltage, current, power, etc.	current, power, etc. Check if the voltage-to-current ratio setting is correct	
readings are incorrect	ings are incorrect Check if the wiring mode setting is consistent with the actual	
	Check if voltage transformer, current transformer is intact	
Power or power factor is	Check if the wiring mode setting is consistent with the actual	
incorrect	Check if the voltage and current phase sequence is correct	
	Check if the wiring is correct	
Communication is not	Check whether the address, baud rate, check digit, etc. in the	
normal	communication settings are consistent with the host computer.	
	Check if the RS485 converter is normal	
	Parallel connection of 120 ohms or more at the end of	
	communication	
	Check if the wiring is correct	

Headquarters: Acrel Co., LTD.

Address: No.253 Yulv Road Jiading District, Shanghai, China

TEL.: 0086-21-69158338 0086-21-69156052 0086-21-59156392 0086-21-69156971

Fax: 0086-21-69158303

Web-site: www.acrel-electric.com

E-mail: ACREL008@vip.163.com

Postcode: 201801

Manufacturer: Jiangsu Acrel Electrical Manufacturing Co., LTD.

Address: No.5 Dongmeng Road, Dongmeng industrial Park, Nanzha Street, Jiangyin City, Jiangsu Province, China

TEL: 0086-510-86179966

Fax: 0086-510-86179975

Web-site: www.jsacrel.com

Postcode: 214405

E-mail: sales@email.acrel.cn